太古に出現した細菌が植物光合成の仕組みを完成させていた!

2017/01/16

ポイント

  • 40億年にも及ぶ生物進化の中で、光合成の代謝系がどのように誕生したのか、また、その進化的な原点は何だったのかということは、これまで不明でした。
  • 地球誕生後の極めて初期に地球上に出現し、光合成を行わないメタン生成菌に、光合成においてCOから糖を合成するための代謝経路の原型を発見しました。
  • 進化の過程で、光合成代謝に関わる各遺伝子が現在のものに進化してきた分子機構が明らかになるとともに、光合成機能を活用した食糧やバイオ燃料生産の増産につながることが期待されます。

【概要】

 国立研究開発法人 科学技術振興機構(JST)戦略的創造研究推進事業において、神戸大学の蘆田 弘樹 准教授(本学バイオサイエンス研究科元助教)と河野 卓成学術研究員(本学バイオサイエンス研究科博士後期課程単位取得退学、本研究成果を元に現在博士号申請中)、立命館大学の松村 浩由 教授らは、光合成でCO2から糖を合成する生物機能の進化的な原型を、光合成を行わない原始的な微生物に発見しました。

 光合成は、太陽光、水、CO2から糖などの炭水化物や酸素を作り出す、地球上の生物が生きていく上で欠かすことのできない生物の営みです。しかし、生物が進化の過程で、光合成の能力をどのようにして獲得したのか、またその進化的な起源については不明で、長い間、科学者の興味を惹いていました。

 本研究グループは、光合成が誕生するよりも前に出現したと考えられているメタン生成菌が、光合成で働く遺伝子とよく似た遺伝子を持っていることを発見しました。これらの遺伝子から合成した酵素の解析や生体内の代謝物質を調べ、取り込まれたCO2の行方を明らかにするためのメタボローム解析を行うことで、糖などの炭水化物を合成する光合成の代謝経路とよく似た原始経路をメタン生成菌が利用していることを明らかにしました。

 本研究により光合成の原始的な代謝経路の一部が明らかになったことから、今後、生物進化の過程でどのように光合成システムが完成されていったのかという、これまで科学が立ち入ることができなかった進化の謎が明らかになっていくと期待されます。また、さらに光合成の進化が明らかになることで、光合成機能を高度に改良・利用することができ、食糧やバイオ燃料の増産にもつながると期待されます。

 本研究は、神戸大学、立命館大学、奈良先端科学技術大学院大学、ビルラ理工大学(インド)、大阪大学、静岡大学と共同で行ったものです。

 本研究成果は、平成29年1月13日(英国ロンドン時間)発行のオンライン総合科学誌「Nature Communications」に掲載されました。

【解説】

<研究の背景と経緯>

 光合成は、生命を維持するうえでのエネルギー源になる糖などの炭水化物を太陽光、CO2、水から合成するもので、地球上のほとんどの生物が依存している生物機能です。地球誕生後の生物進化の過程で、光合成システムがどの様に誕生し、確立されてきたのか、また、その進化的原点は何だったのか、という疑問には科学はまだ答えておらず、長い間、科学者の大きな興味を惹いていました。われわれはこれまで光合成を行わない納豆菌などの枯草菌がほとんどの光合成生物でCO2固定注1)を行っている酵素であるルビスコ (RuBisCO) 注2)の遺伝子とよく似た遺伝子を光合成をおこなわない納豆菌などの枯草菌が持つものの、そのルビスコ様酵素はCO2固定を行わず、光合成とは全く関係のない代謝経路中で働いていること、その機能は多くの植物でRuBisCOが担う反応のごく一部とよく似た反応に関わっていることを、世界に先駆けて解明し、2003年に奈良先端科学技術大学院大学の学生だった蘆田准教授らが米国の科学誌Scienceに発表しました。この研究成果は、地球上に光合成システムが誕生する以前の生物にまで遡った光合成遺伝子進化研究に先鞭をつけましたが、枯草菌RuBisCO様遺伝子の由来やCO2から糖を合成するためのRuBisCOが働く光合成カルビン回路が誕生してきた分子レベルでの説明までは到達しませんでした。

<研究の内容>

 RuBisCOとホスホリブロキナーゼ(PRK)注3)はカルビン回路注4)に特有の酵素です。蘆田准教授らのゲノムデータベースに基づくバイオインフォマティクス解析から、これらの酵素の遺伝子が地球生命誕生後の極めて初期に出現したと考えられている極限環境微生物であるメタン生成菌注5)Methanospirillum hungatei)に存在していることを見出しました。メタン生成菌は、地球生命が誕生した、その極めて初期の段階で出現したと考えられる極限環境微生物の一種です。この結果は、光合成を行わないメタン生成菌が、光合成を行う生物に特有と思われていた遺伝子を有することを意味しています。さらに、これらのメタン生成菌の遺伝子を使って合成した酵素はカルビン回路で機能できる性質を有していました。このメタン生成菌の遺伝子解析や詳細な生化学的解析と13CO2を用いたメタボローム解析注6)から、これら2つの酵素は、メタン生成菌において、これまでまったく知られていなかった新規のメタン生成菌還元的CO2固定経路を作り上げていること、そしてこの経路は既知のカルビン回路の一部と同じ反応経路を利用していることを発見しました(図1)。この生物の進化的位置から考えて、このメタン生成菌で発見したカルビン回路様CO2固定経路は、光合成カルビン回路の進化的原型となったものであると考えられます。

<今後の展開>

 光合成の起源とも言える新規で原始的な還元的CO2固定経路の存在が明らかになったことから、今後の研究で、生物進化の過程でどのように光合成システムが完成されていったのかという、これまで科学が立ち入ることができなかった謎が明らかになっていくことが期待されます。40億年ほど前に地球に出現した初期生物は、500~1,000程度の数の遺伝子しか持ちませんでしたが、その後の40億年の生物進化の過程で、これらの数少ない遺伝子を複製、変異、配列挿入などの改変によって高等動物や高等植物が持つ25,000~35,000程の遺伝子を作り上げ、多様な環境に適応して生命を維持できるようになってきました。しかし、まだ、初期生物の遺伝子がどのような分子的な変化によって多様化したのかは不明です。今回の研究では遺伝子分子進化研究の第一歩として、40億年間のRuBisCOやPRKの進化の過程の関連付けに成功したことになります。今後の研究で、40億年間の遺伝子進化の機構が明らかになることによって、地球生物全体の進化機構、ひいては現在の生物の生存戦略の本質が見えてくると期待されます。さらに、温暖化問題、食糧問題、エネルギー問題などの地球環境問題を解決するために、植物や藻類の光合成機能の改良・利用が期待されています。RuBisCOやカルビン回路は、様々な局面で光合成速度を規定しているため、植物や藻類の光合成機能を改良するためのメインターゲットとされています。今回発見したRuBisCOとカルビン回路の進化的原型をさらに研究することで、光合成の機能改良にも繋がり、これらの問題の解決に寄与することが期待されます。

<研究プロジェクトについて>

 本研究は以下の支援を受け行われました。

  • 科学技術振興機構(JST)戦略的創造研究推進事業 チーム型研究(CREST)および個人型研究(さきがけ)「藻類・水圏微生物の機能解明と制御によるバイオエネルギー創成のための基盤技術の創出」(研究総括:松永 是 東京農工大学 学長)研究領域のCREST研究課題「海洋性アーキアの代謝特性の強化と融合によるエネルギー生産」(研究代表者:跡見 晴幸(京都大学 教授))および、さきがけ研究課題「バイオ燃料高生産のための炭素固定能を強化したスーパーシアノバクテリアの創成」(蘆田 弘樹(神戸大学 准教授))。

【論文情報】

タイトル:"A RuBisCO-mediated novel carbon metabolism in methanogenic archaea"
     (メタン産生アーキアにおけるRuBisCOが機能する新規炭素代謝)
著者と所属:Takunari Kono1, Sandhya Mehrotra2, Chikako Endo1, Natsuko Kizu3, Mami Matusda4, Hiroyuki Kimura5, Eiichi Mizohata3, Tsuyoshi Inoue3, Tomohisa Hasunuma4, Akiho Yokota1, Hiroyoshi Matsumura6, Hiroki Ashida7

1 Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
2 Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, Rajasthan-333031, India
3 Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
4 Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada,-ku, Kobe 657-8501, Japan
5 Department of Geosciences, Graduate School of Science, Shizuoka University, Shizuoka 422-8529, Japan
6 Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
7 Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe 657-8501, Japan

掲載誌:Nature Communications (英国で発行されている総合科学誌)
掲載日時:2017 年1 月13 日(金)日本時間1月13日午後7時
naistar:http://hdl.handle.net/10061/11384(NAIST Academic Repository:naistar)

<参考図>

図1
図1 メタン生成菌の原始カルビン回路

<用語解説>

注1)CO2固定
 植物や一部の微生物が外部から取り込んだ二酸化炭素を有機化合物として生体内で留めておく機能。

注2)ルビスコ (RuBisCO)
 カルビン回路において、CO2の入り口となるCO2固定段階で働く酵素。その機能の悪さから、様々な局面で光合成の速度を規定している。

注3)カルビン回路
 光合成において、取り込んだCO2から糖を合成するための代謝経路である。カルビン回路の名は、発見したカルビン博士に由来し、この発見によりカルビン博士は、1961年にノーベル化学賞を受賞している。

注4)ホスホリブロキナーゼ (PRK)
 カルビン回路において、RuBisCOがCO2固定を行う際にCO2分子の受け取り手として使われるリブロースビスリン酸を合成する酵素。

注5)メタン生成菌
 動物の消化器官や沼、海底堆積物、海底熱鉱床近傍や地殻内などに分布し、地球上で放出されるメタンガスの大半を生産している。メタンを産生する過程で生命エネルギーを獲得している。

注6)メタボローム解析
 生体内の代謝産物を網羅的に検出、定量する実験手法である。炭素(12C)の安定同位体13Cを用いれば、炭素分子の代謝経路の同定にも利用される。

【本プレスリリースに関するお問い合わせ先】

 神戸大学 大学院・人間発達環境学研究科 准教授
  蘆田 弘樹
  TEL:078-803-7753 FAX:078-803-7753
  E-mail:hiroki_ashida@people.kobe-u.ac.jp

【本研究内容についてコメント出来る方】

 京都大学大学院工学研究科生物化学講座
  跡見 晴幸 教授
  E-mail: atomi@sbchem.kyoto-u.ac.jp
  電話:075-383-2777

【JSTの事業に関すること】

 川口 哲
 科学技術振興機構 戦略研究推進部
 〒102-0076 東京都千代田区五番町7 K's五番町
 TEL:03-3512-3524  FAX:03-3222-2064
 E-mail:crest@jst.go.jp

プレスリリース一覧に戻る